

SSC8V16N65GTF

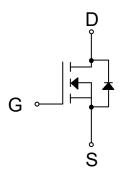
N-Channel Enhancement Mode Power MOSFET

> Features

V _{DS}	V _{GS}	R _{DS(ON)} Typ.	l _D
650V	±30V	0.62Ω@10V	16A

Pin Configuration

> Description


- This device is N-Channel enhancement MOSFET.
- Fast Switching.
- Improved dv/dt Capability.

100% UIS + ΔVDS + Rg Tested!

Applications

- Load Switch
- PWM Application
- Power Management

TO-220F-3L (Top View)

Pin Configuration

Ordering Information

Device	Package	Shipping	
SSC8V16N65GTF	TO-220F-3L	50/Tube	

Marking

(XXYY: Internal Traceability Code)

SSC8V16N65GTF

➤ Absolute Maximum Ratings (T_J=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit		
V_{DSS}	Drain-to-Source Volta	Drain-to-Source Voltage		V	
V_{GSS}	Gate-to-Source Volta	Gate-to-Source Voltage		V	
1	I _D Continuous Drain Current	T _J =25°C	16	Δ.	
ID		T _J =100°C	10	Α	
I _{DM}	Pulsed Drain Curren	64	Α		
Eas	Single Pulsed Avalanche	845	mJ		
PD	Power Dissipation, T _J =25°C		34	W	
T _{STG} /T _J	Junction & Storage Tempera	Junction & Storage Temperature Range			

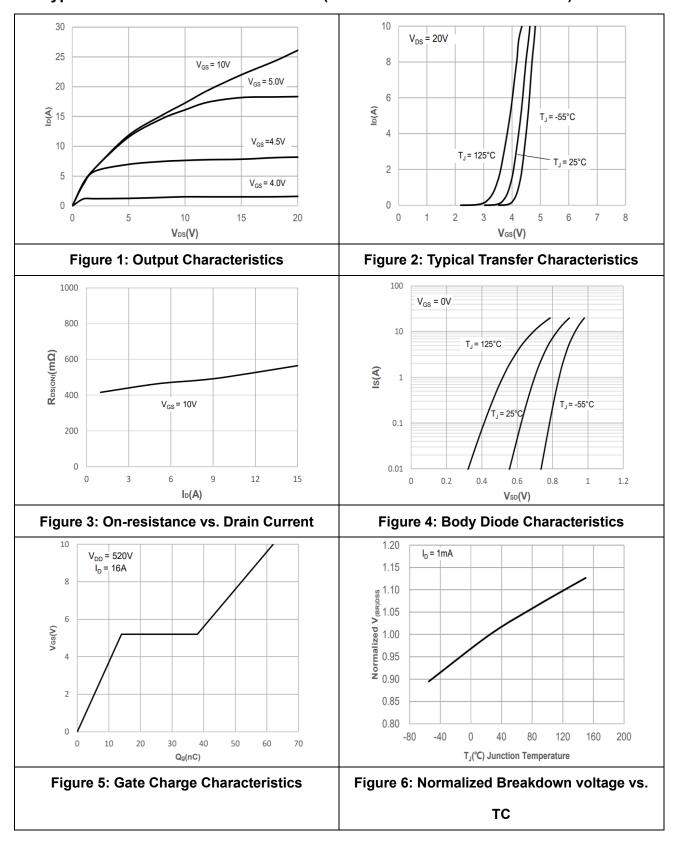
➤ Thermal Resistance Ratings (T_J=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Thermal Resistance, Junction to Ambientb	52	0C/M/
R _{θJC}	Thermal Resistance, Junction to Case	3.7	°C/W

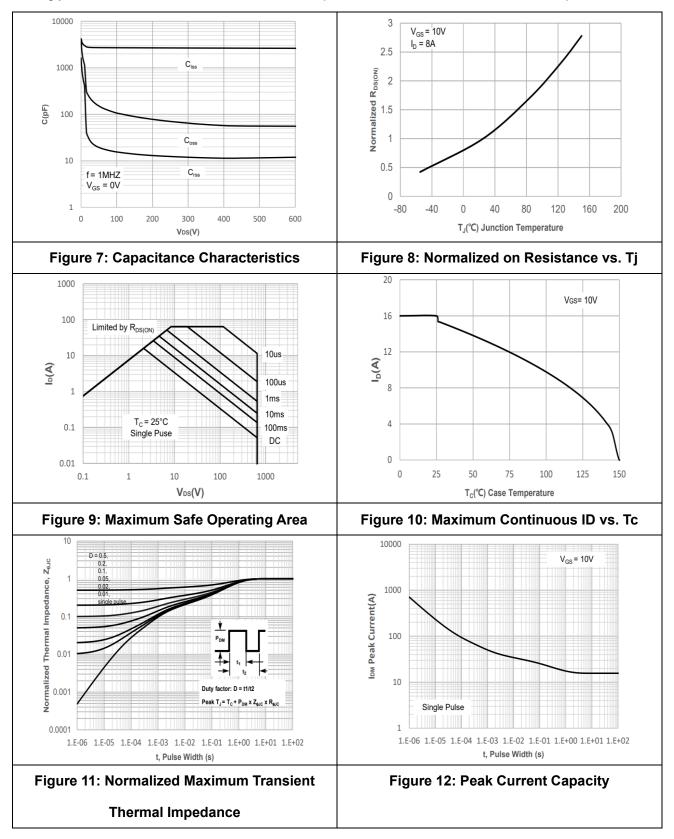
Note:

- > a. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- ▶ b. R_{BJA} is measured with the device mounted on a minimum recommended pad of 2oz copper FR4 PCB.

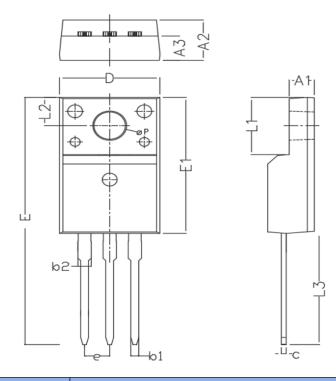
SSC8V16N65GTF


➤ Electrical Characteristics (T」=25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250μA	650			V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 650V, V _{GS} = 0V			1.0	μA
Gate-Source Leak Current	I _{GSS}	$V_{GS} = \pm 30V$, $V_{DS} = 0V$			±100	nA
Gate Threshold Voltage	V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250uA	2	3	4	V
Drain-Source On-Resistance	R _{DS(on)}	V _{GS} = 10V, I _D = 8A		0.48	0.62	Ω
Input Capacitance	Ciss	V 05V V 0V		2747		
Output Capacitance	Coss	$V_{DS} = 25V, V_{GS} = 0V,$		224		pF
Reverse Transfer Capacitance	Crss	f = 1MHz		27		
Total Gate Charge	Q _G			62		
Gate to Source Charge	Q _{GS}	$V_{GS} = 0$ to 10V, $V_{DS} = 520V$,		14		nC
Gate to Drain Charge	Q_{GD}	I _D =16A		24		
Turn-on Delay Time	T _{D(ON)}			38		
Rise Time	Tr	$V_{GS} = 10V$, $V_{DS} = 310V$,		52		
Turn-off Delay Time	T _{D(OFF)}	I_D =16A, R_G = 24 Ω		176		ns
Fall Time	Tf			68		
Maximu Continuous Drain to Source Diode Forward Current	Is				16	А
Maximum Pulsed Drain to Source Diode Forward Current	Іѕм				64	А
Drain to Source Diode Forward Voltage	V _{SD}	VGS = 0V, IS = 16A			1.2	V
Body Diode Reverse Recovery Time	Trr	IF =164 di/dt = 1004/:		476		ns
Body Diode Reverse Recovery Charge	Qrr	IF =16A, di/dt = 100A/us		6.9		μC



> Typical Performance Characteristics (T_J=25°C unless otherwise noted)


> Typical Performance Characteristics (T_J=25°C unless otherwise noted)

> Package Information

TO220F

Symbol	MILL IMETER			
	Min	Nom	Max	
A1	2.34	2.54	2.74	
A2	4.5	4.7	4.9	
A3	2.56	2.76	2.96	
b1	0.7	0.8	0.9	
b2	1.23	1.3	1.47	
С	0.45	0.5	0.6	
D	9.96	10.16	10.36	
E	28.35	28.85	29.35	
E1	15.67	15.87	16.07	
е	2.54REF			
L1	6.48	6.68	6.88	
L2	3.2	3.3	3.4	
L3	12.68	12.98	13.28	
øΡ	3.03	3.4	3.5	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.